Mar17,2009 UAB BMG744

The best proteomics: combination of upfront reduction of sample complexity, reproducible resolution, and effective follow up

Helen Kim, Ph.D.

Dept of Pharmacology & Toxicology University of Alabama at Birmingham helenkim@uab.edu 205-934-3880

HelenKim/UAB/PharmTox

OUTLINE

- Proteomics analysis of actions of a dietary supplement, grape seed extract (GSE), in the brain;
- II. DIGE analysis of protein differences in rat tissues at different developmental stages to determine basis for cancer risk

HelenKim/UAB/PharmTox

Our principal goal: to understand the molecular basis of human chronic conditions/diseases, to develop prevention or therapies.

Strategy: a proteomics approach

Hypothesis: Actions of "beneficial" agents such as dietary anti-oxidants in normal and disease tissue will reveal subproteomes of proteins "at risk" for disease-relevant changes.

HelenKim/UAB/PharmTox

_	
=	
_	
_	
_	
-	
-	

 .	-	
 -	 -	
-	-	
	 -	
	 -	
	_	
	-	

How do you deal with running multiple samples on 2D gels as objectively as possible

Gel#	1	2	3	4	5
	Internal	Internal	Internal	Internal	Internal
Cy 2	Standard	Standard	Standard	Standard	Standard
Cy 3	Day 21	Day 50	Day 21	Day 50	Day 21
Cv 5	Day 50	Day 21	Day 50	Day 21	Day 50

Grid assigns random pairs of samples per gel; In this experiment, the different days were swapped to make sure that there wasn't preferential dye binding of one day over the other.

HelenKim/UAB/PharmTox

Real data from a DIGE experiment Table 2. Fold change, significance and FDR of proteins that were significantly different between days 21 and 50

Master Spot	Figure 4 spot number	Protein Identification	Fold change, 50d/21d	T-Test (p value)	FDR	Pred. Mass. (Da)	Mature mass (Da)	Obs. Mass (Da)	P.red	Mature pl.	Qbs.
162	1	alpha-1-inhibitor III	1.2925	0.0024	0.0500	165,038	161,078	132,210	5.70	5.67	4.97
162	1	procellagen, type XIV, alpha 1 (predicted), isoform CRA_a.	1.2925	0.0024	0.0500	192,494		132,210	5.08		4.97
163	2	similar to Collagen alpha-1(VI) chain precursor	1.9945	0.0003	0.0333	108,738		132,210	5.21		5.14
215	3	alpha-1-inhibitor III	2.8150	0.0004	0.0252	165,038	161,076	122,753	5.70	5.67	4.31
261		PREDICTED: similar to Dynein heavy chain at 89D CG1842-PA	1.2706	0.0107	0.1045	438,140	532,252	117,590	5.87	6.06	5.41
293		heat shock protein 4	1.4585	0.0101	0.1058	93,997	94,057	110,035	5.13	5.13	5.46
302		heat shock protein 4	1,3668	0.0145	0.1289	93,997	94,057	109,179	5.13	5.13	5.41
309		similar to alpha glucosidase,2 alpha neutral subunit	0.8315	0.0392	0.2249	109,390		108,753	5.76		6.11
310	4	similar to alpha glucosidase.2 alpha neutral subunit	0.8153	0.0047	0.0704	109,390		109,179	5.76		6.16
344	5	PREDICTED: similar to ribosome binding protein 1 isoform 1	1.4174	0.0082	0.0955	109,049		103,368	5.79		5.5

(from Kim et al., J. Proteome Res, 2008)

HelenKim/UAB/PharmTox

Image analysis generates "significant" spots for MS analysis

On this gel, half the spots didn't contain enough protein for MS analysis; solution?

HelenKim/UAB/PharmTox

Take home lessons, part I

- Proteomics suggests GSE has pleiotropic effects in the brain:
- gene expression/protein turnover;
 - (Deshane et al., J. Agric. Food Chem.,2004)
 - How would you follow up?
- protein oxidations:
- Informatics helps you relate your data to the rest of the world; in the case of actions of GSE, we know that many of the proteins affected in normal brain are also differentially expressed in AD brain.

 • What will make the GSE effects consistent with
 - neuroprotection?
 - · How do we PROVE that any one effect of GSE actually prevents

HelenKim/UAB/PharmTox

Take home lessons, part II

- DIGE: powerful, but room for lots of quality control;
- In the case of the data presented, these were differences in protein abundance between two developmental ages in female rat tissues;
- How do we know which are important in the actions of a carcinogen which is given at the later age?
- How do we know which cell type these occurred in, and minimize blood protein (albumin) differences?

HelenKim/UAB/PharmTox